Markov renewal process

Markov renewal process
French\ \ processus du renouvellement de Markov
German\ \ Markowscher Erneuerungsprozeß
Dutch\ \ Markov-vernieuwingsproces; Markov-vernieuwingsproces volgens Pyke
Italian\ \ processo del rinnovo
Spanish\ \ proceso de renovación
Catalan\ \ procés de renovació de Màrkov
Portuguese\ \ processo de renovamento de Markov; processo de renovação de Markov (bra)
Romanian\ \ -
Danish\ \ Markov fornyelses proces
Norwegian\ \ -
Swedish\ \ -
Greek\ \ Μαρκοβιανή ανανεωτική διαδικασία
Finnish\ \ Markovin uusiutumisprosessi
Hungarian\ \ Markov-féle megújúlási folyamat
Turkish\ \ Markov yenileme süreci (prosesi)
Estonian\ \ Markovi taastumisprotsess
Lithuanian\ \ Markov atstatymo procesas; Markovo atstatymo procesas
Slovenian\ \ -
Polish\ \ proces odnowienia typu Markowa
Russian\ \ процесс обновления (восстановления) Маркова
Ukrainian\ \ -
Serbian\ \ -
Icelandic\ \ Markov endurnýjun ferli
Euskara\ \ Markov berritzeko prozesua
Farsi\ \ -
Persian-Farsi\ \ -
Arabic\ \ عملية التجديد لماركوف ؛ عملية ماركوف للتجديد
Afrikaans\ \ Markov-hernuwingsproses
Chinese\ \ 马 尔 可 夫 更 新 过 程
Korean\ \ 마르코프 갱신과정

Statistical terms. 2014.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Renewal theory — is the branch of probability theory that generalizes Poisson processes for arbitrary holding times . Applications include calculating the expected time for a monkey who is randomly tapping at a keyboard to type the word Macbeth and comparing the… …   Wikipedia

  • Semi-Markov process — A continuous time stochastic process is called a semi Markov process or Markov renewal process if the embedded jump chain (the discrete process registering what values the process takes) is a Markov chain, and where the holding times (time… …   Wikipedia

  • Counting process — A counting process is a stochastic process {N(t), t ≥ 0} that possesses the following properties: N(t) ≥ 0. N(t) is an integer. If s ≤ t then N(s) ≤ N(t). If s < t, then N(t) − N(s) is the number of events occurred during the… …   Wikipedia

  • Markovian arrival processes — In queueing theory, Markovian arrival processes are used to model the arrival of customers to a queue. Some of the most common include the Poisson process, Markov arrival process and the batch Markov arrival process. Contents 1 Background 2… …   Wikipedia

  • Vaclav E. Benes — Vaclav Edvard Vic Benes (born 1930) is a Czech American mathematician, known for his contributions to the theory of stochastic processes, queueing theory and control theory, as well as the design of telecommunications switches.He studied under… …   Wikipedia

  • Бенеш, Вацлав Эдвард — Václav Edvard Vic Beneš Дата рождения: 1930 год(1930) Научная сфера: математика Альма матер: Принстонский университет …   Википедия

  • Ruin theory — Ruin theory, sometimes referred to as collective risk theory, is a branch of actuarial science that studies an insurer s vulnerability to insolvency based on mathematical modeling of the insurer s surplus.The theory permits the derivation and… …   Wikipedia

  • operations research — the analysis, usually involving mathematical treatment, of a process, problem, or operation to determine its purpose and effectiveness and to gain maximum efficiency. [1940 45, Amer.] * * * Application of scientific methods to management and… …   Universalium

  • Queueing theory — is the mathematical study of waiting lines (or s ). The theory enables mathematical analysis of several related processes, including arriving at the (back of the) queue, waiting in the queue (essentially a storage process), and being served by… …   Wikipedia

  • ANTISEMITISM — ANTISEMITISM, a term coined in 1879, from the Greek ἁντί = anti, and Σημ = Semite by the German agitator wilhelm marr to designate the then current anti Jewish campaigns in Europe. Antisemitism soon came into general use as a term denoting all… …   Encyclopedia of Judaism

  • William Feller — Naissance 7 juillet 1906 Zagreb (Croatie) Décès 14 janvier 1970 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”